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1 ATHENA overview

We present ATHENA (Analysis of Tumor HEterogeNeity from spAtial omics measurements), an open-source
computational framework that brings together established and novel scores able to capture the heterogeneity
of the tumor ecosystem. ATHENA supports any spatial omic data modality (e.g., imaging mass cytometry
(IMC), multiplexed ion beam imaging (MIBI), seqFISH, Visium), as well as standard tissue imaging data
(e.g., multiplexed immunohistochemisty (mIHC) or immunofluorescence (mIF). Those technologies profile
samples at different resolutions (e.g., IMC or MIBI produce data at subcellular resolution, and Visium
sequences multiple cells per spot). For simplicity, throughout this document and figures we use cell as
the fundamental entity of an individual observation, but we note that in practice the exact nature of that
observation depends on the specifics of the data acquisition technology and the preprocessing of the acquired
data.

ATHENA is implemented in a highly modular fashion, based on two main components:

• SpatialOmics, a new data structure inspired by AnnData[1].

• SpatialHeterogeneity, a module that enables the computation of various heterogeneity scores.

1.1 SpatialOmics Data Structure

The SpatialOmics class is designed to accommodate storing and processing spatial omics datasets in a
technology-agnostic and memory-efficient way. A SpatialOmics instance incorporates multiple attributes
that bundle together the multiplexed raw images with the segmentation masks, cell-cell graphs, single-cell
values, and sample-, feature- and cell-level annotations, as outlined in Supplementary Figure 1 below. Since
ATHENA works with multiplexed images, memory complexity is a problem. SpatialOmics stores data in a
HDF5 file and lazily loads the required images on the fly to keep the memory consumption low. The Spa-
tialOmics structure is sample-centric, i.e., all samples from a spatial omics experiment are stored separately
by heavily using Python dictionaries.

.images dict
multiplexed images
{sample: numpy arrays}

.masks nested dict
segmentation masks
{sample: {mask_type:

numpy array}}

.G nested dict
cell-cell graphs
{sample: {graph_type:

networkx graph}}

SpatialOmics Data Structure

.spl dataframe
sample annotations

.X dict
single-cell measurements
{sample: pandas dataframe}

.obs dict
single-cell annotations
{sample: pandas dataframe}

.var dict
feature annotations
{sample: pandas dataframe}

.uns dict
unstructured data

Supplementary Figure 1: Overview of SpatialOmics data structure. Boxes indicate different attributes,
their content, Python data type and dimensions.

Specifically, each SpatialOmics instance contains the following attributes (Figure 1):

• .images: A Python dictionary (length: #samples) of raw multiplexed images, where each sample is
mapped to a numpy array of shape: #features x image width x image height.

• .masks: A nested Python dictionary (length: #samples) supporting different types of segmentation
masks (e.g., cell and tissue masks), where each sample is mapped to an inner dictionary (length:
#mask types), and each value of the inner dictionary is a discrete numpy array of shape: image width
x image height.

• .G: A nested Python dictionary (length: #samples) supporting different topologies of graphs (e.g., knn,
contact or radius graph), where each sample is mapped to an inner dictionary (length: #graph types),
and each value of the inner dictionary is a networkx [2] graph.
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• .X: A Python dictionary of single-cell measurements (length: #samples), where each sample is mapped
to a pandas dataframe of shape: #single cells x #features. The values in .X can either be uploaded
or directly computed from .images and .masks.

• .spl: A pandas dataframe containing sample-level annotations (e.g., patient clinical data) of shape:
#samples x #annotations.

• .obs: A Python dictionary (length: #samples) containing single-cell-level annotations (e.g., cluster
id, cell type, morphological features), where each sample is mapped to a pandas dataframe of shape:
#single cells x #annotations.

• .var: A Python dictionary (length: #samples) containing feature-level annotations (e.g. name of
protein/transcript), where each sample is mapped to a pandas dataframe of shape: #features x #an-
notations.

• .uns: A Python dictionary containing unstructured data, e.g. various colormaps, experiment properties
etc.

1.2 SpatialHeterogeneity module

The SpatialHeterogeneity module is the heart of ATHENA that implements all visualization, processing and
analysis steps integral to its functionalities. SpatialHeterogeneity consists of the following 5 submodules,
each one performing different tasks as outlined in Supplementary Figure 2 below:

SpatialHeterogeneity

.pl
interactive plotting 

functions

.graph
cell-cell graph 
construction

.metrics
spatial entropy scores

.neigh
cell-cell interaction 

scores

.pp
pre-processing functions

Supplementary Figure 2: Overview of SpatialHeterogeneity module. Boxes indicate different submod-
ules performing different functions.

SpatialHeterogeneity is tightly interwoven with SpatialOmics (see Supplementary Figure 3), in the sense
that the submodules of SpatialHeterogeneity take as input various aspects of the data as stored in Spa-
tialOmics (green arrows) and, at the same time, stores computed outputs back into different attributes of
SpatialOmics (purple arrows).

.images .masks .G

SpatialOmics Data Structure

.spl.X .obs .var .uns

SpatialHeterogeneity

.graph
cell-cell graph 
construction

.metrics
spatial entropy scores

.neigh
cell-cell interaction 

scores

.pp
pre-processing functions

.pl
interactive plotting 

functions

SpatialOmics

SpatialHeterogeneity

Supplementary Figure 3: Information flow between SpatialOmics and SpatialHeterogeneity. Ar-
rows indicate flow of information from SpatialOmics to SpatialHeterogeneity (light green) and vice versa
(light purple).
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• .pp works with .images and .masks and facilitates image pre-processing functions, such as extraction
of cell centroids or arcsinh transformation. ATHENA requires segmentation masks to be provided by
the user.

• .pl supports plotting all aspects of the data, including raw images, masks, graphs and visualizes different
annotations as well as results of computed heterogeneity scores. The plots can be either static or
interactive, by exploiting the Python image viewer napari.

• .graph constructs cell-cell graphs from the cell masks using three different graph builders (kNN, radius
and contact, details in Section 1.3). The resulting graphs are saved back to the .G attribute of Spa-
tialOmics.

• .metrics uses the cell-cell graphs, the single-cell values (in .X) and cell annotations (in .obs) to compute
a number of diversity scores, including sample richness (number of distinct cell subpopulations/cluster-
s/clones) and abundance (relative proportions of species), and information-theoretic scores, (namely
Shannon, Simpson, quadratic, or Renyi entropy, Hill numbers), either at a global, sample level (saved
in .spl), or at a local, single-cell-level (saved in .obs) that incorporates the spatial information.

• .neigh implements a number of neighborhood or spatial statistics methods, namely infiltration score,
Ripley’s K and neighborhood analysis scores [3]. Results are saved in .spl and .uns.

1.3 Graph construction

The .graph submodule of SpatialHeterogeneity constructs a graph representation of the tissue using the
cell masks extracted from the high-dimensional images. The graph construction module implements three
different graph flavors that capture different kinds of cell-cell communication:

1.3.1 Contact graph

The contact graph representation mimics juxtacrine signaling, where cells exchange information via mem-
brane receptors, junctions or extracellular matrix glycoproteins. The contact graph is constructed by binary
dilation of the single-cell masks and then connecting cells that overlap after dilation. Dilation is a morpho-
logical modification of the original image, by which a structuring element S (a mask of arbitrary shape) is
applied to the image [4]. If the structuring element placed at coordinate x and the cell masks in the image
overlap, pixel x is set on, leading to an enlargement of the original cell mask. Other cell masks that intersect
with the enlarged cell mask are considered neighbors in the contact graph.

1.3.2 Radius graph

The radius graph representation mimics paracrine signaling, where signaling molecules that are secreted into
the extracellular environment interact with membrane receptors of neighboring cells and induce changes in
their cellular state. The communication distance of paracrine signaling is determined by diffusion and is
thus limited to relatively short distances. ATHENA’s radius graph module builds on top of the scikit-learn
implementation. For each cell, the centroid of the cell mask is used as its coordinate. The value of the radius
can be adapted depending on the underlying data, with a default value of 36 pixels.

1.3.3 kNN graph

The k-nearest neighbor (k-NN) graph representation was chosen because of its popularity and application
in digital pathology [5]. From a biological perspective, this representation is the most arbitrary, since it is
not restricted by spatial distances or local cell densities, and leads to representations in which all cells have
a minimum number of k neighbors. Similarly to the radius graph module, the kNN graph module builds
on top of the scikit-learn implementation, and, for each cell, the centroid of the cell mask is used as its
coordinate. The value of k is tunable, with a default value of k = 5, based on related work [5]. We note that
a neighboring relationship is not a symmetric relationship (i.e., for any two cells i, j, the fact that cell i is a
neighbor of cell j does not necessarily imply that cell j is a neighbor of cell i).
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1.4 Heterogeneity quantification

ATHENA brings together a number of established as well as novel scores that enable the quantification of
tumor heterogeneity in a spatially-aware manner, borrowing ideas from ecology, information theory, spatial
statistics, and network analysis. As previously discussed, the majority of the scores included in ATHENA
require as input a graph representation of the data and a single-cell-level phenotypic annotation. The latter
can be achieved either via gating/manual thresholding, or by clustering of the single-cell profiles and using
the cluster labels as phenotypes. Depending on the underlying mathematical foundations, the heterogeneity
scores included in ATHENA can be classified into the following categories: (i) spatial statistics scores that
quantify the degree of clustering or dispersion of each phenotype individually, (ii) graph-theoretic scores that
examine the topology of the tumor graph, (iii) information-theoretic scores that quantify how diverse the
tumor is with respect to different phenotypes present and their relative proportions, and (iv) cell interaction
scores that assess the pairwise connections between different phenotypes in the tumor ecosystem. A summary
of the implemented scores can be found in Supplementary Table 1; we next provide explanations and detailed
mathematical definitions of these scores.

1.4.1 Spatial statistics scores

Spatial statistics scores quantify the localization of observations in space (events). Ripley’s K is a commonly
employed spatial statistic score that determines if events deviate from spatial homogeneity [6]. In the context
of tumor heterogeneity, Ripley’s K has been previously used to analyze the spatial heterogeneity of different
types of immune cells using multiplexed IHC images [7, 8]. The K function is defined as:

K(r) = λ−1E [number of events within distance r of a randomly chosen event] (1)

where λ is the density of events. Ripley’s K characterises the observed events at various distances r. To
compute the expected number of events, one needs to assume a process that generates events in space, with
the simplest and most broadly used model being the Poisson process that has a closed-form solution:

K(r) = πr2 (2)

Estimating K̂(r) from a data set with N observations collected in an area A is performed by first

estimating the density of the sample as λ̂ = N
A . Ignoring edge effects, the numerator can be estimated by

N−1
∑
i

∑
j 6=i I(dij < r), where dij is the distance between two observations i and j and I(x) is the indicator

function that is equal to 1 if condition x is fulfilled, and 0 otherwise. However, this estimate ignores the
fact that the study area is chosen arbitrarily and observations that are located outside of this area are not
counted, which is especially problematic at large values of r. Various edge corrections have been proposed
to counteract this bias. Ripley himself suggested to use a weight function w(xi, xj) [9] that has a maximum
value of 1 if a circle centered at xi and passing through xj is enclosed in the study area. On the other hand,
if part of the circle is outside of the study area, then w(xi, xj) is the proportion of the circumference of the
circle that falls in the study area:

K̂(r) = λ−1
∑
i

∑
i 6=j

w(xi, xj)
−1 I(dij < r)

N
(3)

K̂(r) is commonly estimated for r < min(lx, ly)/2, where lx and ly are the dimensions of the study

area. Given K̂(r), one can test if the observed events correspond to a homogeneous Poisson process, i.e., if

K̂(r) = πr2 for all r. In practice, the variance-stabilizing transform L̂(r) =
[
K̂(r)/π

]1/2
is commonly used.

Spatial homogeneity is assessed by observing the plot of L̂(r)− r that should be equal to zero for uniformly
distributed events in space (see Supplementary Figure 4 for a toy example and main Figure 1E for a real
tumor example). ATHENA supports the computation of Ripley’s K and the variance-stabilizing transform
L(r) in the .neigh submodule.
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Supplementary Figure 4: Spatial statistics scores. Ripley’s K and its variance-stabilizing transform L(r)
quantify the extend of clustering, uniformity or dispersion as a function of radius r, exemplified here for a
purple, orange and blue phenotype, respectively.

1.4.2 Graph-theoretic scores

An appealing alternative towards quantifying tumor heterogeneity is offered by exploiting graph-theoretic
concepts that quantify different topological properties of the graph representation. A common measure in
this category is modularity that has long been explored in biological networks and associated with their
robustness [10]. Modularity captures the structure of a graph by quantifying the degree at which it can
be divided into communities of the same label. In the context of tumor heterogeneity, modularity can be
thought of as the degree of self-organization of the cells with the same phenotype into spatially distinct
communities: as seen in Supplementary Figure 5, a graph of high modularity represents a tumor where
connections between the cells within the same community are more dense than connections between cells of
different communities. Modularity is formally defined by the following equation [11]:

Q =
1

2m

∑
ij

(
Aij − γ

kikj
2m

)
δ(ci, cj) (4)

where m is the number of connections, A is the adjacency matrix of graph G, ki is the number of edges
connected to node i (also known as node degree), γ is the resolution parameter, and δ(ci, cj) is 1 if nodes
i and j belong to the same community and 0 otherwise. In practice, to compute the graph modularity the
following equivalent equation is used [10]:

Q =

n∑
c=1

[
Lc
m
− γ

(
kc
2m

)2
]

(5)

where Lc and kc are the number of intra-community edges and the sum of degrees of all nodes in community c,
respectively. ATHENA exploits networkx, a Python package that supports creation and analysis of complex
graphs, which implements equation 5 to compute the graph modularity, included in ATHENA’s .metrics
submodule.
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High modularity Low modularity

phenotype 1

phenotype 2

phenotype 3

Myoepithelial
CKlow HRhi p53+

HRlow CK+

CK+ HR+

HRhi CK+

Endothelial
Macrophages
T cells
B and T cells
B cells
SMAhi Vim
Fibronectinhi

Small elongated
Small circular
Vimentinhi

Epithelial low
CKlow HRlow

CK7+ CKhi Cadherin
Basal CK
Proliferative
p53+ EGFR+
Apoptotic

Modularity = 0.41 Modularity = 0.08

A B

C D

Supplementary Figure 5: Graph modularity. (A-B) Two hypothetical tumors of the same phenotypic
composition and their corresponding cell graphs with different levels of graph modularity. (C-D) Two
representative examples of a high and a low modularity tumor from the IMC breast cancer dataset of [12].

1.4.3 Information-theoretic scores

The quantification of the diversity in an ecosystem is a longstanding problem in ecology and a vast body
of scientific literature has addressed the problem (for a thorough review of heterogeneity metrics applied
to cancer research, see [3]). The application of the concepts developed in ecology to cancer research is
straightforward, as there is a direct analogy between biological and tumor ecosystems. In general, the
scores developed in ecology are functions of the number of species (richness) and their relative abundance,
weighting each aspect differently depending on the score. The mathematical foundation of these scores
is rooted in information theory, where similar concepts were employed to quantify information content or
uncertainty of a communication system [13]. In the context of tumor heterogeneity, notable examples of
information-theoretic scores include quantifying genetic heterogeneity using a variety of fluorescence in situ
hybridization or immunofluorescence assays [14, 15, 16, 17, 18]. ATHENA currently implements the following
information-theoretic scores, included in the .metrics submodule:

1. Richness: The most basic and intuitive heterogeneity score is richness S, which simply counts the
number of observed cell subpopulations within a tumor sample, independently of their relative abun-
dance. This score is equivalent to tumor clonality, commonly employed in genetic heterogeneity studies
[3] to quantify the number of distinct clones in a tumor.
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2. Shannon index: Shannon index H takes into consideration not only the number of cell subpopulations
S present, but also their relative proportions. Assuming that p(xi) represents the probability of
observing a cell subpopulation xi, then it is defined as:

H = −
S∑
i=1

p(xi) log p(xi) (6)

Another way to view Shannon entropy is as a quantification of the degree of ‘surprise‘, in other words,
how likely we are to guess the phenotype of a randomly observed cell from a tumor sample. This
concept is visualized in Supplementary Figure 6A, in which three different tumors with different phe-
notype distributions are shown: the more even the cell proportions, the more uncertain our prediction.
Shannon entropy increases with richness and evenness, and reaches its maximal value when the cell
subpopulation distribution is uniform.

3. Simpson index: Similarly, the Simpson index considers both richness and relative abundance and is
defined as:

D =

S∑
i=1

p(xi)
2 (7)

The Simpson index describes the probability of sampling the same phenotype twice from the tumor.
In contrast to the Shannon index, the Simpson index decreases with increasing diversity. Furthermore,
the Simpson index is sensitive to the abundance of the more dominant phenotype and can be regarded
as a measure of dominance concentration [19].

4. Hill Numbers: The Hill numbers qD [19] constitute a family of heterogeneity scores under a unified
mathematical expression:

qD =

(
S∑
i=1

p(xi)
q

)1/(1−q)

0 ≤ q ≤ ∞ (8)

It can be shown that richness S, Shannon index H and Simpson index D are all special cases of qD:

0D = S (9)
1D = expH (10)

2D =
1

D
(11)

As shown by [19], low values of q giving more emphasis to rare phenotypes. An interesting application
of the Hill numbers in the biological domain can be found in immunology, where immune repertoires
from different patients that are not directly comparable were mapped in a common diversity index
space to predict immune status [20].

5. Renyi entropy: Similarly to the Hill numbers, Renyi entropy is a generalization of multiple entropic
measures [21]. In the context of tumor heterogeneity, Renyi entropy has been previously used to
quantify the diversity of the tumor lung TCR repertoires [22]. Renyi entropy is defined as:

Hα =
1

1− α
log

(
S∑
i=1

p(xi)
α

)
(12)

Similarly to the Hill numbers, it can be shown that, for different values of α, Renyi entropy is equivalent
to other entropic expressions:

H0 = logR (Hartley entropy) (13)

H1 = S (Shannon entropy) (14)

H2 = − log
∑
x∈X

p(x)2 = − logD (Collision entropy) (15)

H∞ = − log max
x

p(x) (Min-entropy) (16)
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6. Rao’s quadratic entropy: The indices and quantification methods discussed so far consider both
richness and relative abundance of phenotypes, but ignore the similarity of these phenotypes, i.e., how
close they are in phenotypic space. Rao’s quadratic entropy [23] accounts for that by incorporating a
distance metric d(xi, xj) and is defined as:

Q =

S−1∑
i=1

S∑
j=i+1

d(xi, xj)p(xi)p(xj) (17)

In their original definition, all entropic scores described above do not take the spatial component into
account when calculated on a whole tumor level. For this reason, ATHENA implements two flavors of these
scores: a global flavor, in which the metrics are computed at a whole sample level using only the phenotype
distribution, and a local flavor, in which the scores are computed at a single-cell level, using also the graph
structure (see Supplementary Table 1 and Supplementary Figure 6B). Specifically, when computing local
scores, ATHENA iterates over all cells, and for each cell, computes the local entropy within its neighborhood.
In this way, highly diverse regions where cells from multiple different phenotypes coexist can be highlighted
(see real tumor examples in Supplementary Figure 6F-H), and, instead of computing a single entropy value
as for the global flavor, a distribution of entropic values is returned (Supplementary Figure 6I-K).
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Endothelial
Macrophages
T cells
B and T cells
B cells
SMAhi Vimentin
Fibronectinhi

Larger elongated
Small circular
Vimentinhi
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CKlow HRlow

CK7+ CK+

CK7+ CKhi Cadherin
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Apoptotic
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HR+ CK+ 
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Supplementary Figure 6: Information-theoretic scores. (A) Global information-theoretic scores (e.g.,
Shannon, Simpson or quadratic entropy) take into consideration the number and relative proportions of
phenotypes present in a tumor to compute tumor heterogeneity at a whole-tumor level, as shown here for
three hypothetical tumors with different compositions. (B) In contrast, local information-theoretic scores
additionally account for the spatial positioning of these phenotypes, as shown here for three tumors of the
same phenotypic composition and thus same global entropy, but different spatial patterns. (C-E) Three
representative examples of tumors with very similar values of global entropy but distinct spatial patterns as
in (B), together with their local entropy heatmaps (F-H) and histograms (I-K).
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1.4.4 Cell interaction scores

More sophisticated heterogeneity scores additionally consider cell-cell interactions by exploiting the cell-
cell graph, where nodes encode cells, edges encode interactions, and each node is associated with a label
that encodes the cell’s phenotype. The cell interaction scores implemented in ATHENA’s neigh submodule
include:

1. Infiltration score: The infiltration score quantifies the degree to which a certain cell phenotype has
penetrated among cells of another type. In cancer research, the degree to which immune cells infiltrate
the tumor tissue is of particular interest and one can distinguish between cold and hot tumors based on
if they include few or many immune cells, respectively. Hot tumors can in turn have different spatial
organisations of this infiltration. In [24], the authors proposed a tumor-immune mixing score, defined
as the ratio of the number of immune-tumor interactions to the number of immune-immune interac-
tions. Based on the values of this score, they categorized hot tumors into compartmentalized in which
tumor and immune cell self-cluster in separate, non-intermixed compartments (score<0.22, Supple-
mentary Figure 7A) and intermixed that have immune cells dispersed in the tumor mass (score>0.22,
Supplementary Figure 7C). The infiltration score implemented in ATHENA is a generalized form of
the above score, formally defined as:

number of cell type i - cell type j interactions

number of cell type i - cell type i interactions
(18)

where i, j the labels of any two cell phenotypes. As a consequence, the implementation of the score
does not explicitly limit its application to immune-to-tumor infiltration, but is very flexible and allows
the user to define any pairwise interaction, e.g., a specific immune subtype to the whole tumor, or
even non-immune types of infiltration, should this be of interest. As obvious from the formula, the
infiltration score is not defined in cases of samples that do not feature any cell type i - cell type i
interactions.

ATHENA implements two flavors of the infiltration score, a global one that returns an estimate at the
whole-sample level, and a local one, where, for each cell in the sample, the infiltration is computed
on the sub-graph only containing all immediate neighbors of this cell. The local flavor of the score
aims to capture intermediate categorizations of tumors, where both compartmentalization and local
immune infiltration co-exist (Supplementary Figure 7B). Indeed, as we see in the real tumor examples of
Supplementary Figure 7D-F, although tumors in panels D-E have very similar global infiltration scores,
the tumor of panel E has more infiltration ”hotspots” than tumor D. Observing the distribution of the
local immune infiltration score of all three tumors (Supplementary Figure 7J-L), we see that decreasing
values of skewness as we move from the compartmentalized to the intermixed case.

2. Neighborhood analysis score: Neighborhood analysis [25] (also known as spatial enrichment anal-
ysis [24]) quantifies pairwise interactions between phenotypes by assessing whether they occur more
or less often (attraction or avoidance, respectively) than expected by chance (Supplementary Figure
8A-C). This is achieved by an iterative process, where, for each cell in the graph, neighboring cells
are recorded, all pairwise interactions between different phenotypes are counted, and a global average
interaction score across all cells of that phenotype is computed. Then, the significance of the observed
pairwise interactions is assessed by a permutation test: cell labels in the graph are permuted, i.e.,
randomized while keeping their relative proportions fixed, and the pairwise interactions scores are re-
computed for these random node phenotype assignments. The obtained H0 distribution of interaction
scores is then used to compute a p-value for the observed interaction strength (Supplementary Figure
8D-F).

ATHENA implements three flavors of this score (classic, histoCAT and proportional) that differ on
how phenotype interactions are counted and averaged across all cells. An R implementation of the clas-
sic and histoCAT flavors is also available here: https://bodenmillergroup.github.io/imcRtools/

reference/countInteractions.html. These different flavors are exemplified in the toy example of
Supplementary Figure 9, where cell 1 has three green and one violet cell neighbors, and cell 2 only has
three green cell neighbors.
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Supplementary Figure 7: Infiltration score. (A-C) Three different hypothetical tumors with a compart-
mentalized (A), locally infiltrated (B) and intermixed (C) infiltration pattern. (D-F) Three representative
examples of compartmentalized, locally infiltrated and intermixed tumors, with their infiltration heatmaps
(G-I) and local infiltration score distributions (J-L).

Classic: In the classic flavor of the neighborhood analysis score, the average number of interactions
between cells of the same phenotype is computed. In our example, this translates to an average score
of 3 for the Blue→Green interaction, and an average of 0.5 for the Blue→Violet interactions.

12



x

y

x

y

x

y

avoidance

attraction

Clustered Clustered + intermixed Intermixed

Clustered Clustered + intermixed Intermixed
Endothelial
Macrophages
T cells
B and T cells
B cells
SMAhi Vimentin
Fibronectinhi

Larger elongated
Small circular
Vimentinhi

Epitheliallow

CKlow HRlow

CK7+ CK+

CK7+ CKhi Cadherin
Basal CK
Proliferative
Apoptotic
Myoepithelial
HRlow CK+

HR+ CK+ 
HRhi CK+

A B C

D E F

G H I

J K L

Supplementary Figure 8: Neighborhood analysis. (A-C) Three hypothetical tumors of the same pheno-
typic composition that exhibit markedly different patterns of phenotype-phenotype interactions, as captured
by the pairwise neighborhood analysis scores (D-F). (G-I) Three representative examples of tumors with
distinct interaction patterns, together with the interaction heatmaps of pairwise interaction scores between
the 10 more abundant cell phenotypes (J-L).

HistoCAT: In the histoCAT flavor, the global average of interaction score is only computed across
cells that actually show this interaction. In the scenario of Supplementary Figure 9, when computing
the average interaction score Blue→Violet, only cell 1 is considered, since cell 2 does not have any
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cell 1 cell 2

Counts Counts Classic HistoCAT Proportional
cell 1 cell 2 flavor flavor flavor

Blue→Blue 0 0 0 0 0
Blue→Violet 1 0 0.5 1 0.125
Blue→Green 3 3 3 3 0.875

Supplementary Figure 9: Different flavors of neighborhood analysis scores. Working principles of
the different flavors of neighborhood analysis, exemplified at two blue cells, highlighting how the global
interaction strength of blue cells with green and violet cell types is computed.

violet cell neighbors. This leads to an inflated interaction value of 1 when compared to the classic
flavor.

Proportional: Finally, the proportional flavor uses interaction frequencies instead of counts, i.e.,
divides the counts of pairwise interactions by all interactions a given cell has. In our toy example,
cell 1 and cell 2 interact with violet cells at a frequency of 0.25 and 0, respectively, leading to a
global average score of 0.125. Similarly, cell 1 and cell 2 interact with green cells at a frequency of
0.75 and 1, respectively, leading to a global average score of 0.875. We propose this approach as an
alternative that normalizes the scores with respect to varying cell density. In contrast to the classic or
the histoCAT flavor, the proportional flavor is not influenced by the number of cells in a sample and
the score is bounded in the range of [0,1]. Furthermore, in addition to a p-value, we propose to compute
the difference between the observed proportion of interactions obsij between cell type i → j and the
randomised proportion of interactions randij . This difference can be asymmetrical (i → j 6= j → i),
is bounded in the range of [-1,1], and might be more suited as input for certain machine learning
models. Three realistic examples of tumors with distinct interaction patterns and their interaction
score heatmaps are given in Supplementary Figure 9G-L.
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Supplementary Tables

Score Flavor Input Hyperparameter Previously used

Spatial statistics

Ripley’s K global G,P r, graph choice [7, 8]

Graph-theoretic

Modularity global G,P γ, graph choice ATHENA

Information-theoretic

Richness global P – [26]
Richness local G,P graph choice ATHENA
Shannon index global P – [14, 16, 17]
Shannon index local G,P graph choice ATHENA
Simpson index global P – [14, 15, 17]
Simpson index local G,P graph choice ATHENA
Renyi entropy global P α [22]
Renyi entropy local G,P α, graph choice ATHENA
Hill numbers global P q [20]
Hill numbers local G,P q, graph choice ATHENA
Quadratic entropy global P D(x, y) [18, 27]
Quadratic entropy local G,P D(x, y), graph choice ATHENA

Cell interaction

Infiltration global G,P graph choice [24]
Infiltration local G,P graph choice ATHENA
Classic global G,P graph choice [25]
HistoCAT global G,P graph choice [25]
Proportion global G,P graph choice ATHENA

Supplementary Table 1: Summary of all heterogeneity quantification scores included in ATHENA.
The flavor column indicates if the score is computed on a global (sample) level or on a local (observation)
level. The input column specifies the input information used by the scores. Global scores use the phenotype
distribution P and do not rely on spatial information. In contrast, scores that require a graph input use the
spatial information encoded in the graph representation G. Results of some methods depend on additional
hyperparameter choices (r: radius, γ: resolution parameter, α and q: parameteres used for Hill numbers and
Renyi entropy, respectively, D(x, y): a distance measure between single-cell profiles x and y.
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